

www.elsevier.nl/locate/carres

Carbohydrate Research 325 (2000) 245–252

Synthesis of the tetrasaccharide related to the repeating unit of the antigen from *Shigella dysenteriae* type 5th

Indrani Mukherjee, Saibal Kumar Das, Ali Mukherjee, Nirmolendu Roy*

Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India

Received 28 July 1999; accepted 10 December 1999

Abstract

Starting from L-rhamnose, D-mannose and 2-amino-2-deoxy-D-glucose hydrochloride, two disaccharide blocks, namely, ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl-1-thio- α -D-mannopyranoside and 2-(trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-4,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside, were synthesised and then allowed to react in the presence of N-iodosuccinimide and trifluoromethane sulfonic acid to give a tetrasaccharide derivative. This compound was converted into 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]- α -L-rhamno-pyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 4)-2-O-acetyl-3,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-acetamido-4,6-di-O-benzyl-2-deoxy- β -D-glucopyranoside, which on hydrogenolysis, afforded the methyl ester 2-(trimethylsilyl)ethyl glycoside of the tetrasaccharide related to the repeating unit of the O-antigen from *Shigella dysenteriae* type 5. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Synthesis; Tetrasaccharide repeating unit; Shigella dysenteriae type 5

1. Introduction

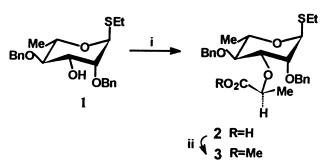
Shigella dysenteriae is the most virulent among the pathogenic bacilli of the genus Shigella [1]. Enterobacteria from the Shigella family are responsible for intestinal diseases including dysentery, and have the potential for causing catastrophic public health problems in developing countries [2]. They are very resistant to antimicrobial drugs. This resistance, therefore, necessitates the exploration of other medical approaches for control of diseases caused by this pathogen [3]. It has been suggested [4,5] that circulating antibodies to the

related to the repeating unit (I) of Shigella

O-specific polysaccharide of *Shigella* may pro-

tect the host against shigellosis, and that con-

jugate vaccines consisting of the O-specific polysaccharide (O-SP) of Shigella covalently attached to an immunogenic protein could, indeed, confer protective immunity to humans against shigellosis. Much work on the synthesis of oligosaccharides related to Shigella flexnery variant Y [6] and Shigella dysenteriae types 1 [7] and 2 [8] has been reported. Pozsgay [9] prepared a glycogonjugate vaccine against Shigella dysenteriae type 1 that claimed to have better antigenicity than the native O-SP. It is, therefore, probable that the O-SP from Shigella dysenteriae type 5 may also play a protective role against shigellosis and bacillary dysentery in human. We report herein the total synthesis of tetrasaccharide II


^{*} Presented at the XIXth International Carbohydrate Symposium, San Diego, CA, USA, 1998, Abstr. BP 006.

^{*} Corresponding author. Fax: +91-33-4732805. *E-mail address:* bcnr@mahendra.iacs.res.in (N. Roy)

dysenteriae type 5 [10]. The synthesised oligosaccharide can also be utilised as a molecular probe for studying the immunochemical behaviour of the antigen.

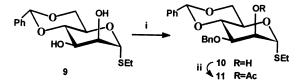
The position of the *O*-acetyl groups on the mannose moiety in **I** was not unequivocally established and was arbitrarily assigned to either the C-2 or C-3 position. The possibility that the importance of the *R*-lactic acid substituted L-rhamnose component at the non-reducing end might play a role in the immune response is also a reason for our decision to synthesise tetrasaccharide **II** related to *Shigella dysenteriae* type 5.

$$\begin{array}{c|cccc} (R)HOOCCH(CH_3) & OAc & OAc \\ & | & | & | \\ & 3 & 2 & 2 \\ \alpha-L-Rhap-(1\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(OSE) \end{array}$$

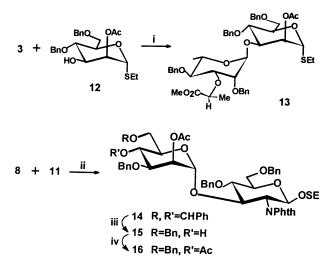
Scheme 1. (i) NaH, (S)-2-bromopropionic acid, dioxane; (ii) CH_2N_2 , Et_2O .

Scheme 2. (i) AllBr, DMF, NaH; (ii) 80% ACOH; (iii) BnBr, NaH, DMF; (iv) PdCl₂, MeOH.

2. Results and discussion


The known ethyl 2,4-di-O-benzyl-1-thio- α -L-rhamnopyranoside [11] (1), prepared from L-rhamnose, was allowed to react with (S)-2-bromopropionic acid and sodium hydride to give **2**, which was esterified with diazomethane [12] to afford the donor ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-1-thio- α -L-rhamnopyranoside (3) (Scheme 1). The structure of **3** was confirmed by its ¹H NMR spectrum, which showed a broad singlet at δ 5.29 for the anomeric proton, and peaks at δ 4.10, 3.63 and 1.37 for $CH(CH_3)COOCH_3$, $CH(CH_3)COOCH_3$ and $CH(CH_3)COOCH_3$, respectively.

In another experiment, 2-(trimethylsilyl)-ethyl 4,6-*O*-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside [13] (4) was allylated [14] with allyl bromide and sodium hydride to afford 2-(trimethylsilyl)ethyl 3-*O*-allyl-4,6-*O*-benzylidene - 2 - deoxy - 2 - phthalimido-β-D-glu


copyranoside (5). Removal of the benzylidene group from 5 followed by benzylation of product 6 with benzyl bromide and sodium hydride in N,N-dimethylformamide gave 2-(trimethylsilyl)ethyl 3-O-allyl-4,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (7). Removal of the allyl group from 7 with palladium chloride [15] in methanol afforded 2-(trimethylsilyl)ethyl 4,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (8) (Scheme 2).

Ethyl 4,6-O-benzylidene-1-thio- α -D-mannopyranoside [16] (9) was converted into ethyl 3-O-benzyl-4,6-O-benzylidene-1-thio- α -D-mannopyranoside (10) via its stannylene derivative [17]. Acetylation of 16 afforded ethyl 2-O-acetyl-3-O-benzyl-4,6-O-benzylidene-1-thio- α -D-mannopyranoside (11) (Scheme 3). Compound 17 has signals for CHPh (δ 5.63), acetyl, benzyl and thioethyl groups in the 1H NMR spectrum.

Donor 3 was then allowed to react with the acceptor ethyl 2-O-acetyl-4,6-di-O-benzyl-1-

Scheme 3. (i) Bu_2SnO , C_6H_6 , BnBr, Bu_4NBr ; (ii) Ac_2O , pyridine.

Scheme 4. (i) IDCP, CH₂Cl₂, 4 Å MS; (ii) NIS, TfOH, CH₂Cl₂; (iii) NaBH₃CN, HCl-ether, THF; (iv) Ac₂O, pyridine.

thio- α -D-mannopyranoside (12) [18] in the presence of iodonium dicollidine perchlorate (IDCP) [19] in dichloromethane to give the disaccharide ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-O-acetyl-4,6-di-O-benzyl-1-thio- α -D-mannopyranoside (13) in 71% yield. The prevalence for the reaction [20,21] of the ethyl thioglycoside 6 as donor, in the presence of the ethyl thioglycoside 12 as acceptor, is obviously ascribed to the activation of 6 by the benzyl substituent at O-2 while 12 is deactivated by the acetyl substituent at O-2 (Scheme 4).

In a separate experiment, donor **11** was allowed to react with acceptor **8** in the presence of *N*-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH) [21] in dichloromethane to afford the disaccharide 2-(trimethylsilyl)ethyl 2-O-acetyl-3-O-benzyl-4,6-O-benzylidene- α -D-mannopyranosy-(1 \rightarrow 3)-4,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (**14**) in 90% yield. Treatment of **14** with sodium cyanoborohydride and hydrogen chloride in ether and tetrahydrofuran

gave 2-(trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -4,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (15) in 68% yield with a free OH group at its C-4^{II} position (Scheme 4). The structure of 15 was confirmed from its signals at δ 5.44 (H-2^{II}), 5.23 (H-1^{II}), 5.17 (H-1^I), 4.23 $(H-2^{I})$, 3.63 $(H-4^{II})$, 1.91 $(CH_{3}CO)$, 0.78 (OCH_2CH_2Si) and -0.13 $(Si(CH_3)_3)$ in the ¹H NMR spectrum and at δ 169.8 (COCH₃), 99.6 $(C-1^{I})$, 97.5 $(C-1^{II})$, $(C-2^{I})$, 20.7 $(COCH_3)$, 17.7 (CH₂Si(CH₃)₃) and -1.5 (Si(CH₃)₃) in the ¹³C NMR spectrum. The presence of an OH group at C-4^{II} of 15 was confirmed by acetylation with acetic anhydride and pyridine as described above. In the ¹H NMR spectrum of the resulting acetate 16, the signal of H-4^{II} had shifted downfield to δ 5.17 compared with its position at δ 3.63 in the spectrum of 15.

Reaction of donor 13 with acceptor 15 in the presence of NIS and TfOH in dichloromethane afforded 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-Oacetyl-4,6-di-O-benzyl-α-D-mannopyranosyl- $(1 \rightarrow 4)$ -2-O-acetyl-3,6-di-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -4,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (17) 79% yield. Compound 17 was characterised by its signals at δ 5.43, 5.28 (2 bs, 2 H, H-2^{II}, $H-2^{III}$), 5.25 (2 bs, 2 H, $H-1^{II}$, $H-1^{III}$), 5.16 (d, 2 H, J 8.4 Hz, H-1^I, H-1^{IV}), 3.41 (CH- $(CH_3)COOCH_3$, 2.06, 1.94 (2 $COCH_3$), 1.38 $(CH(CH_3)COOMe),$ 1.36 $(H-6^{IV}),$ (OCH₂CH₂Si), -0.13 $(Si(CH₃)₃) and at <math>\delta$ 173.3, 169.8, 169.7 (3 CO), 99.2 (C-1^I), 99.1, 97.6 (C-1^{II}, C-1^{III}), 93.4 (C-1^{IV}), 55.6 (C-2^I), 51.7 (COOCH₃), 20.9, 20.7 (2 COCH₃), 18.8 (CH(CH₃)COOMe), 18.2 (C-6^{IV}), 17.7 (CH₂- $Si(CH_3)_3$ and -1.5 ($Si(CH_3)_3$) in the ¹³C NMR spectrum.

Dephthaloylation of **17** with ethylene diamine [22] in butanol followed by N-acetylation of the product with acetic anhydride and triethylamine gave 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl] - α - L - rhamnopyranosyl- (1 \rightarrow 3) - 2 - O-acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1 \rightarrow 4)-2-O-acetyl-3,6-di-O-benzyl-α-D-mannopyranosyl-(1 \rightarrow 3) - 2 - acetamido - 4,6 - di-O-benzyl-2-deoxy-β-D-glucopyranoside (**18**) in

Scheme 5. (i) NIS-TfOH, CH₂Cl₂, 4 Å MS; (ii) ethylene diamine, butanol, Ac₂O, triethyl amine; (iii) 10% Pd-C, H₂, AcOH.

79% yield. The presence of the acetamido group in 18 was confirmed by its signal at δ 1.74 (NHCOCH₃) in the ¹H NMR spectrum and at δ 23.0 (NHCOCH₃) in the ¹³C NMR spectrum. Hydrogenolysis [23] of 18 gave 2-(trimethylsilyl)ethyl 3-O-[(R)-1-(methoxycarbonyl)ethyl]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-O-acetyl- α -D-mannopyranosyl- $(1 \rightarrow 4)$ -2-Oacetyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy-β-D-glucopyranoside (19) 73% yield (Scheme 5). Compound 19 had signals at δ 5.47–5.37 (H-2^{II}, H-2^{III}, H-1^{II}, 5.15 (H-1^{IV}), 5.14 (H-1^I), (CH(CH₃)COOCH₃), 2.03, 2.02 (2 OAc), 1.92 (NHCOC H_3), 0.76 (OCH₂C H_2 Si) and -0.13 $(Si(CH_3)_3)$ in the ¹H NMR spectrum and at δ 174.4, 174.1, 173.8, 173.8 (4 CO), 100.8 (C-1¹), 100.3, 99.9 (C-1^{II}, C-1^{III}), 97.6 (C-1^{IV}), 54.7 $(C-2^{I})$, 51.9 $(COOCH_3)$, 23.7 $(NCOCH_3)$, 21.4, 21.1 (2 COCH₃), 19.7 (CH(CH₃)COO-Me), 17.9 (C-6^{IV}), 17.6 ($CH_2Si(CH_3)_3$) and -1.5 (Si(CH₃)₃) in the ¹³C NMR spectrum.

3. Experimental

General.—All reactions were monitored by thin-layer chromatography (TLC) on Silica Gel G (E. Merck). Column chromatography was performed on 100–200 mesh Silica Gel (SRL, India). All solvents were distilled and/or dried before use and all evaporations were conducted below 40 °C under reduced pressure unless stated otherwise. Optical rotations were measured with a Perkin–Elmer model

241 MC polarimeter. The ¹H and ¹³C NMR spectra were recorded on a Varian A-60 or Bruker DPX 300 spectrometer using CDCl₃ as solvent (internal standard TMS) unless otherwise stated. Melting points were determined on a paraffin oil bath and are uncorrected.

Ethyl 2,4-di-O-benzyl-3-O-[(R)-2-(methoxy $carbonyl)ethyl] - 1 - thio - \alpha - L - rhamnopyranos$ ide (3).—To a solution of ethyl 2,4-di-O-benzyl-1-thio-α-L-rhamnopyranoside [11] (1, 1.6 g, 4.09 mmol) in dioxane (42 mL) was added NaH (60% oil coated, 883 mg, 22.09 mmol). The solution was then stirred for 1 h at 95 °C. The mixture was cooled to 65 °C and a solution of (S)-2-bromopropionic acid (2.2 mL, 24.1 mmol) in dioxane (10 mL) was added with vigorous stirring. After 1.5 h, a suspension of NaH (3.5 g) in dioxane was added and stirring was continued overnight at 65 °C. The mixture was then cooled to room temperature (rt) and MeOH (12 mL) was added to decompose the excess of NaH. The reaction mixture was then diluted with CH₂Cl₂, washed with water, dried (Na₂SO₄) and concentrated to a syrup. Column chromatography with 0.01% AcOH in 3:1 toluene-EtOAc gave 2 (1.2 g, 64%). This acid (2) was dissolved in ether (10 mL) and an ethereal diazomethane solution (20 mL) was added dropwise. The reaction was completed within 1 min and the excess of CH₂N₂ was decomposed by adding dilute AcOH. The solvents were evaporated off and traces of acid and water were removed by co-evaporation with toluene. Chromatography

with 3:1 toluene–EtOAc gave pure 3 (1.2 g, 97%); $[\alpha]_D^{25}$ – 77.23° (c 0.3, CHCl₃). ¹H NMR: δ 7.43–7.19 (m, 10 H, aromatic protons), 5.29 (bs, 1 H, H-1), 5.04, 4.59 (2 d, 2 H, J 10.8, C H_2 Ph), 4.75, 4.67 (2 d, 2 H, J 12.3 Hz, C H_2 Ph), 4.10 (q, 1 H, J 6.6 Hz, CH(CH₃)-COOCH₃), 4.00 (m, 1 H, H-5), 3.84 (bs, 1 H, H-2), 3.76 (m, 1 H, H-3), 3.63 (s, 3 H, COOC H_3), 3.58 (t, 1 H, J 9.0 Hz, H-4), 2.58 (m, 2 H, SC H_2 CH₃), 1.37 (d, 3 H, J 6.6 Hz, CH(C H_3)COOMe), 1.31 (d, 3 H, J 6.3 Hz, H-6), 1.24 (t, 3 H, J 8.0 Hz, SCH₂C H_3). Anal. Calcd for C₂₆H₃₄O₆S: C, 65.79; H, 7.22. Found: C, 65.68; H, 7.36.

2-(Trimethylsilyl)ethyl3-O-allyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (5).—To a solution of 2-(trime-4,6-O-benzylidene-2-deoxy-2thylsilyl)ethyl phthalimido-β-D-glucopyranoside [13] (4, 4.6 g, 9.2 mmol) in DMF (37 mL) was added NaH (60% oil coated, 552 mg, 13.8 mmol) at 0 °C with stirring. After 30 min, allyl bromide (1.1 mL, 12.9 mmol) was added and stirring was continued at rt for 7 h. Excess NaH was decomposed by the addition of MeOH (2.3) mL). The reaction mixture was then diluted with CH₂Cl₂. The organic layer was washed with water, dried (Na₂SO₄) and concentrated. Column chromatography of the product with 3:1 toluene-Et₂O gave 5 (1.44 g, 29%); $[\alpha]_{D}^{25} - 10.5^{\circ}$ (c 1.2, CHCl₃). ¹H NMR: δ 8.05–7.23 (m, 9 H, aromatic protons), 5.56 (s, 1 H, CHPh), 5.38 (m, 1 H, CH₂=CH-CH₂),5.28 (d, 1 H, J 8.4 Hz, H-1), 5.14 (m, 2 H, CH_2 =CH-CH₂), 4.70 (t, 1 H, J 9.6 Hz, H-3), $4.4\tilde{6}$ (dd, 1 H, $J_{3,4}$ 10.5, $J_{4,5}$ 4.5 Hz, H-4), 4.30 (dd, 1 H, $J_{1,2}$ 9.0, $J_{2,3}$ 10.5 Hz, H-2), 4.11 (m, H, $CH_2 = CH - CH_2$), 3.90 (m, OCH₂CH₂Si), 3.80 (m, 1 H, H_{eq}-6), 3.65 (m, 1 H, H_{ax} -6), 3.50 (m, 1 H, H-5), 0.80 (m, 2 H, $OCH_2CH_2Si)$, -0.13 (s, 9 H, $Si(CH_3)_3$). Anal. Calcd for $C_{29}H_{35}O_7NSi$: C, 64.78; H, 6.56. Found: C, 64.64; H, 6.77.

2-(Trimethylsilyl)ethyl 3-O-allyl-4,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyran-oside (7).—Compound 5 (1.4 g, 2.6 mmol) was dissolved in AcOH (23.4 mL) and water (5.9 mL) and stirred at 80 °C for 2 h. The mixture was concentrated to dryness and co-evaporated with toluene to remove traces of acid and water to give 6 (1.2 g, 95%). Com-

pound 6 (1.2 g, 2.7 mmol) was benzylated according to the conventional method [24]. Column chromatography of the product with 4:1 toluene-Et₂O gave pure 7 (0.90 g, 55%); $[\alpha]_{\rm D}^{25}$ + 10.67° (c 1.0, CHCl₃). ¹H NMR: δ 8.02–7.23 (m, 14 H, aromatic protons), 5.28 (d, 1 H, J 8.4 Hz, H-1), 5.11 (m, 2 H, CH_2 =CH-CH₂), 4.70 (m, 4 H, 2 C H_2 Ph), 4.50 (t, 1 H, J 9.6 Hz, H-3), 4.45 (dd, 1 H, J_{3.4} 10.5, $J_{4,5}$ 4.5 Hz, H-4), 4.20 (dd, 1 H, $J_{1,2}$ 9.0, $J_{2,3}$ 10.5 Hz, H-2), 4.17 (m, 2 H, $CH_2 = CH - CH_2$), 4.0 (m, 2 H, OCH_2CH_2Si), 3.80 (m, 1 H, H_{eq} -6), 3.70 (m, 1 H, H_{ax} -6), 3.40 (m, 1 H, H-5), 0.80 (m, 2 H, OCH₂C H_2 Si), -0.13 (s, 9 H, Si(C H_3)₃). Anal. Calcd for C₃₆H₄₃O₇NSi: C, 68.65; H, 6.88. Found: C, 68.53; H, 7.10. 2-(Trimethylsilyl)ethyl 4,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (8).— The allyl derivative 7 (0.8 g, 1.3 mmol) was dissolved in dry MeOH (10 mL) and PdCl₂ (114 mg, 0.6 mmol) was added. The mixture was stirred at 25 °C for 4 h, then filtered through a Celite bed and concentrated to dry-Column chromatography with toluene-Et₂O gave pure 8 (417 mg, 54%); $[\alpha]_D^{25}$ -6.85° (c 2.0, CHCl₃). ¹H NMR: δ 8.02–7.20 (m, 14 H, aromatic protons), 5.22 (d, 1 H, J 8.4 Hz, H-1), 4.80-4.60 (m, 4 H, 2 C H_2 Ph), 4.40 (t, 1 H, J 9.6 Hz, H-3), 4.35 (dd, 1 H, J_{3.4} 10.5, $J_{4.5}$ 4.5 Hz, H-4), 4.10 (dd, 1 H, $J_{1.2}$ 9.0, $J_{2,3}$ 10.5 Hz, H-2), 3.90 (m, 2 H, OC H_2 C H_2 Si), 3.80 (m, 1 H, H_{eq} -6), 3.60 (m, 1 H, H_{ax} -6), 3.40 (m, 1 H, H-5), 0.80 (m, 2 H, OCH₂-

67.33; H, 6.78. Ethyl 3-O-benzyl-4,6-O-benzylidene-1-thio- α -D-mannopyranoside (10).—To a solution of 9 (5.32 g, 17.0 mmol) in benzene (150 mL), Bu₂SnO (5.1 g, 20.4 mmol) was added and the mixture was refluxed with azeotropic removal of water for 6 h. The reaction mixture was concentrated to dryness. Fresh benzene (60 mL), benzyl bromide (12 mL, 102.2 mmol) and Bu₄NBr (2.7 g, 8.5 mmol) were added and stirred overnight at 65 °C. The solvent was evaporated off, MeOH was added and the mixture was cooled. Solids that separated were filtered off and the filtrate was concentrated to a syrup. Column chromatography with 3:1 toluene–EtOAc gave pure 10 (5.53 g, 81%); $[\alpha]_{D}^{25}$ + 73.64° (*c* 0.7, CHCl₃). ¹H NMR:

 $CH_2Si)$, -0.13 (s, 9 H, $Si(CH_3)_3$). Anal. Calcd

for C₃₃H₃₉O₇NSi: C, 67.21; H, 6.66. Found: C,

 δ 7.53–7.31 (m, 10 H, aromatic protons), 5.62 (s, 1 H, CHPh), 5.38 (s, 1 H, H-1), 486, 4.71 (2 d, 2 H, J 11.7 Hz, CH₂Ph), 4.29–4.18 (m, 3 H, H-2, H-3, H-4), 4.13 (m, 1 H, H_{eq}-6), 3.90 (m, 1 H, H_{ax}-6), 3.70 (m, 1 H, H-5), 2.61 (m, 2 H, SCH₂CH₃), 1.30 (t, 3 H, J 7.5 Hz, SCH₂CH₃). Anal. Calcd for C₂₂H₂₆O₅S: C, 65.65; H, 6.51. Found: C, 65.76; H, 6.71.

Ethyl 2-O-acetyl-3-O-benzyl-4,6-O-benzylidene-1-thio- α -D-mannopyranoside (11).—To a solution of **10** (5.5 g, 13.7 mmol), pyridine (30 mL) and Ac₂O (15 mL) were added. After 3 h at rt, the reaction mixture was evaporated and then co-evaporated with toluene. Column chromatography with 3:1 toluene-Et₂O gave pure **11** (6.0 g, 98.5%) as a syrup; $[\alpha]_D^{25}$ $+58.69^{\circ}$ (c 0.2, CHCl₃). ¹H NMR: δ 7.52– 7.26 (m, 10 H, aromatic protons), 5.63 (s, 1 H, CHPh), 5.45 (dd, 1 H, H-2), 5.26 (s, 1 H, H-1), 4.68 (m, 2 H, CH_2Ph), 4.22 (m, 2 H, H-3, H-5), 4.09 (t, 1 H, H-4), 3.96 (dd, 1 H, H_{eq} -6), 3.87 (t, 1 H, H_{ax} -6), 2.63 (m, 2 H, SCH_2CH_3), 2.17 (s, 3 H, $COCH_3$), 1.29 (t, 3 H, J 7.5 Hz, SCH₂CH₃). Anal. Calcd for C₂₄H₂₈O₆S: C, 64.84; H, 6.35. Found: C, 64.96; H, 6.51.

Ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - $2-O-acetyl-4,6-di-O-benzyl-1-thio-\alpha-D-man$ nopyranoside (13).—A solution of 3 (360 mg, 0.8 mmol) and ethyl 2-O-acetyl-4,6-di-O-benzyl-1-thio-α-D-mannopyranoside (12) [18] (395 mg, 0.9 mmol) in CH₂Cl₂ (15 mL) containing MS 4 Å (1 g) was stirred at rt for 12 h under N₂. Freshly prepared IDCP (750 mg, 1.6 mmol) was added at a time to the solution at -10 °C. The mixture was stirred for 2 h at 24 °C. The mixture was then filtered and the filtrate was washed with 10% aq Na₂S₂O₃, sat ag NaHCO₃ and water in succession, dried (Na₂SO₄) and concentrated to a syrup. Column chromatography with 8:1 toluene— Et₂O gave pure **13** (550 mg, 71%); $[\alpha]_D^{25}$ -38.97° (c 1.5, CHCl₃). ¹H NMR: δ 7.48– 7.12 (m, 20 H, aromatic protons), 5.44 (bs. 1) H, \dot{H} -2¹), 5.30 (bs, 1 H, \ddot{H} -1¹¹), 5.12 (bs, 1 H, H-1^I), 5.09-4.34 (m, 9 H, 4 C H_2 Ph, H-2^{II}), 4.12 (dd, 1 H, $J_{2,3}$ 3.0, $J_{3,4}$ 9.6 Hz, H-3^{II}), 3.97 (q, 1 H, J 6.6 Hz, $CH(CH_3)COOMe$), 3.89 (dd, 1 H, H-4^I), 3.86 (dd, 1 H, H-3^I), 3.84 (dd, 1 H, H- 4^{II}), 3.61 (m, 4 H, H- 5^{I} , H- 5^{II} , H- 6^{I}),

3.37 (s, 3 H, COOC H_3), 2.61 (m, 2 H, SC H_2 CH₃), 2.16 (s, 3 H, COC H_3), 1.33 (d, 3 H, J 6.9 Hz, CH(C H_3)COOMe), 1.26 (t, 3 H, J 6.3 Hz, SCH₂C H_3), 1.25 (d, 3 H, J 6.3 Hz, H-6^{II}). ¹³C NMR: δ 173.3, 170.1 (2 carbonyl carbons), 139.3–127.2 (aromatic carbons), 93.0 (C-1^{II}), 82.3 (C-1^I), 79.7, 78.6, 75.8, 75.0, 73.9, 73.5, 73.4, 72.9, 72.6, 71.9, 71.7, 69.1, 68.6, 68.1, 51.7 (CH(CH₃)COOCH₃), 25.3 (CH(CH₃)COOMe), 21.1 (COCH₃), 18.8 (SCH₂CH₃), 18.0 (C-6^{II}), 14.8 (SCH₂CH₃). Anal. Calcd for C₄₈H₅₈O₁₂S: C, 67.11; H, 6.81. Found: C, 66.96; H, 7.00.

2-(Trimethylsilyl)ethyl 2-O-acetyl-3-O-ben $zyl-4,6-O-benzylidene-\alpha-D-mannopyranosyl (1 \to 3)$ - 4,6 - di - O - benzyl - 2 - deoxy - 2 - phthal*imido-\beta-D-glucopyranoside* (14).—A solution of donor 11 (225.5 mg, 0.5 mmol) and acceptor **8** (250 mg, 0.4 mmol) in CH₂Cl₂ (2 mL) containing 4 Å MS (200 mg) was stirred at rt for 14 h under N₂. NIS (158 mg, 0.7 mmol) and TfOH (6.2 µL, 0.07 mmol) were then added at -20 °C. After 4 h, the reaction mixture was diluted with CH₂Cl₂, filtered through a Celite bed, washed with 5% Na₂S₂O₃, sat aq NaHCO₃ and water, dried (Na₂SO₄) and concentrated. Column chromatography with 15:1 toluene-Et₂O gave pure **14** (350 mg, 90%) as a white foam; $[\alpha]_D^{25}$ $+ 13.5^{\circ}$ (c 0.3, CHCl₃). ¹H NMR: δ 7.83–7.17 (m, 24 H, aromatic protons), 5.55 (s, 1 H, CHC_6H_5), 5.38 (bs, 1 H, H-2^H), 5.27 (bs, 1 H, $H-1^{II}$), 5.18 (d, 1 H, J 8.7 Hz, $H-1^{I}$), 3.30 (m, 2 H, OC H_2 CH $_2$ Si), 1.95 (s, 3 H, COC H_3), 0.78 (m, 2 H, OCH₂CH₂Si), -0.13 (s, 9 H, $Si(CH_3)_3$). ¹³C NMR data (CDCl₃): δ 169.7 (COCH₃), 138.8–126.2 (aromatic carbons), 101.1 (PhCH), 99.8 (C-1^I), 97.7 (C-I^{II}), 79.8, 77.5, 76.8, 74.9, 74.3, 73.8, 73.5, 72.2, 69.5, 68.1, 66.9, 64.7, 55.4 (C-2^I), 20.8 (COCH₃), 17.8 (CH_2SiMe_3) , -1.5 $(Si(CH_3)_3)$. Anal. Calcd for $C_{55}H_{61}O_{13}NSi$: C, 67.95; H, 6.32. Found: C, 67.82; H, 6.50.

2-(Trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl-α-D-mannopyranosyl- $(1 \rightarrow 3)$ -4,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (15).—To a solution of 14 (54.9 mg, 0.06 mmol) and NaBH₃CN (32 mg, 0.5 mmol) in THF (9 mL) containing MS 3 Å (100 mg) was added saturated HCl gas in ether at 0 °C until the solution was acidic or the evolution

of H₂ ceased. After 5 min, TLC indicated complete reaction. The mixture was diluted with CH₂Cl₂, washed in succession with water, sat aq NaHCO₃, water, then dried (Na₂SO₄) and concentrated. Column chromatography with 3:1 toluene–Et₂O gave **15** (40 mg, 68%) as white foam; $[\alpha]_{D}^{25} + 19.5^{\circ}$ (c 0.3, CHCl₃). ¹H NMR: δ 7.76–7.16 (m, 24 H, aromatic protons), 5.44 (dd, 1 H, $J_{1,2}$ 1.8, $J_{2,3}$ 3.0 Hz, $H-2^{II}$), 5.23 (d, 1 H, J 1.2 Hz, $H-1^{II}$), 5.17 (d, J 8.4 Hz, H-1^I), 4.77–4.16 (m, 8 H, 4 C H_2 Ph), 4.23 (dd, 1 H, $J_{1,2}$ 10.5, $J_{2,3}$ 8.4 Hz, H-2^I), 3.94 (m, 1 H, H-3^I), 3.93 (m, 2 H, OCH_2CH_2Si), 3.84 (dd, 1 H, H-4^I), 3.78 (m, 3 H, H_b -6^I, $H-6^{TI}$), 3.63 (m, 2 H, H_a-6^I , $H-4^{II}$), 3.49 (m, 2 H, H-3^{II}, H-5^{II}), 3.20 (m, 1 H, H-5^I), 1.91 (s, 3 H, CH_3CO), 0.78 (m, 2 H, OCH_2CH_2Si), -0.13 (s, 9 H, Si(CH₃)₃). ¹³C NMR: δ 169.8 (COCH₃), 137.9–127.1 (aromatic carbons), 99.6 (C-1¹), 97.5 (C-1¹¹), 79.6, 76.5, 73.4, 73.3, 71.9, 71.7, 67.9, 66.4, 55.5 (C-2^I), 20.7 $(COCH_3)$, 17.7 $(CH_2Si(CH_3)_3)$, -1.5 (Si- $(CH_3)_3$). Anal. Calcd for $C_{55}H_{63}O_{13}NSi$: C, 67.81; H, 6.52. Found: C, 67.94; H, 6.65. Compound 15 (10 mg) was acetylated in the usual way with acetic anhydride and pyridine to give the acetate 16 (9 mg), ¹H NMR: δ 7.73–7.19 (m, 24 H, aromatic protons), 5.39 $(t, 1 H, J 2.7 Hz, H-2^{II}), 5.24 (d, 1 H, J 1.5)$ Hz, H-1^{II}), 5.18 (d, 1 H, J 8.1 Hz, H-1^I), 5.17 (t, 1 H, J 9.3 Hz, H-4^{II}), 4.76-4.26 (m, 8 H, 4 CH_2PH), 4.22 (dd, 1 H, $J_{1,2}$ 10.8, $J_{2,3}$ 8.4 Hz, $H-2^{I}$), 3.92 (m, 2 H, OC H_2 C H_2 Si), 3.78 (m, 2 H, H- 6^{II}), 3.67 (m, 2 H, H- 6^{I}), 3.47 (m, 1 H, $H-5^{II}$), 3.24 (m, 1 H, $H-5^{I}$), 1.94, 1.65 (2 S, 6 H, 2 COC H_3), 0.78 (m, 2 H, OC H_2 C H_2 Si), -0.14 (s, 9 H, Si(C H_3)₃).

2-(Trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-α-L-rhamno-pyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1 \rightarrow 4)-2-O-acetyl-3,6-di-O-benzyl-α-D-mannopyranosyl-(1 \rightarrow 3)-4,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glu-copyranoside (17).—A solution of donor 13 (80 mg, 0.09 mmol) and acceptor 15 (65.0 mg, 0.07 mmol) in CH₂Cl₂ (2 mL) containing 4 Å MS (200 mg) was stirred for 2 h under N₂. The temperature was then lowered to -20 °C. N-Iodosuccinimide (28 mg, 0.12 mmol) and TfOH (3.5 μL, 0.04 mmol) were then added. After 2 h, the reaction was com-

pleted and then the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and washed with 5% aq Na₂S₂O₃, sat aq NaHCO₃ and water, respectively, dried (Na₂SO₄) and concentrated. Column chromatography with 10:1 toluene-ether gave pure **17** (98 mg, 79%) as a syrup; $[\alpha]_D^{25} + 31.4^{\circ}$ (c 0.07, CHCl₃). ¹H NMR: δ 7.56–7.01 (m, 44 H, aromatic protons), 5.43, 5.28 (2 bs, 2 H, H-2^{II}, H-2^{III}), 5.25 (2 bs, 2 H, H-1^{II}, H-1^{III}), 5.16 (d, 2 H, J 8.4 Hz, H-1^I, H-1^{IV}), 3.91 (m, 2 H, OCH₂CH₂Si), 3.41 (s, 3 H, CH(CH₃)COOCH₃), 2.06, 1.94 (2 s, 6 H, 2 COC H_3), 1.38 (d, 3 H, J 6 Hz, $CH(CH_3)COOMe$), 1.36 (d, 3 H, J 6.6 Hz, $H-6^{IV}$), 0.83 (m, 2 H, OCH₂CH₂Si), -0.13 (s, 9 H, $Si(CH_3)_3$) ¹³C NMR: δ 173.3, 169.8, 169.7 (3 carbonyl carbons), 138.4-127.2 (aromatic carbons), 99.2 (C-11), 99.1, 97.6 (C-111, C-1^{III}), 93.4 (C-1^{IV}), 79.8, 79.7, 78.7, 78.0, 75.6, 75.1, 74.9, 74.5, 73.9, 73.5, 73.3, 72.8, 72.6, 72.3, 72.0, 71.9, 71.6, 71.1, 68.8, 66.1, 55.6 (C-2^I), 51.7 (COO*C*H₃), 20.9, 20.7 (2 COCH₃), 18.8 (CH(CH₃)COOMe), 18.2 (C- 6^{IV}), 17.7 ($CH_2Si(CH_3)_3$), -1.5 ($Si(CH_3)_3$). Anal. Calcd for C₁₀₁H₁₁₅O₂₅NSi: C, 68.49; H, 6.54. Found: C, 68.60, H, 6.74.

2-(Trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O- $[(R)-1-(methoxycarbonyl)ethyl]-\alpha-L-rhamno$ $pyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl \alpha$ -D-mannopyranosyl- $(1 \rightarrow 4)$ -2-O-acetyl-3,6di-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2acetamido-4,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (18).—Compound 17 (80 mg. 0.04 mmol) in butanol (10 mL) was added to ethylenediamine (1.2 mL) under Ar. The solution was stirred for 20 h at 90 °C. The solvents were then removed under reduced pressure by evaporation twice with toluene and once with ethanol to give a yellow syrup. The mixture was then treated with Ac₂O (1.3 mL) and Et₃N (125 μ L). After stirring for 14 h at rt, EtOH (25 mL) and water (1.3 mL) were added, and the solution was concentrated to dryness. The residue was purified by column chromatography using 1:1 toluene-EtOAc to give **18** (60 mg, 79%); $[\alpha]_D^{25} + 21.94^{\circ}$ (c 2.4, CHCl₃). ${}^{1}H$ NMR: δ 7.23–7.01 (m, 40 H, aromatic protons), 6.12, 5.32 (2 bs, 2 H, H-2^{II}, $H-2^{III}$), 5.19, 5.11 (2 bs, 2 H, $H-1^{II}$, $H-1^{III}$), 5.17 (d, 1 H, J 10.2, H-1^I), 4.99 (bs, 1 H, $H-1^{IV}$), 3.91 (m, 2 H, OC H_2 C H_2 Si), 3.52 (s, 3

H, CH(CH₃)COOC*H*₃), 1.94, 1.90, 1.74 (3 s, 9 H, 2 OAc, 1 NHCOC*H*₃), 0.83 (m, 2 H, OCH₂C*H*₂Si), -0.13 (s, 9 H, Si(C*H*₃)₃). ¹³C NMR data (CDCl₃): δ 175.6, 170.5, 169.8, 169.6 (4 carbonyl carbons), 137.0–123.3 (aromatic carbons), 99.9 (C-1¹), 99.3, 98.6 (C-1¹¹, C-1¹¹¹), 93.1 (C-1¹¹), 80.4, 78.3, 76.0, 75.4, 74.5, 73.8, 73.5, 73.3, 72.8, 72.2, 72.1, 71.3, 68.1, 66.7, 56.8 (C-2¹), 51.7 (COO*C*H₃), 23.0 (NCO*C*H₃), 21.0, 20.6 (2 CO*C*H₃), 19.7 (CH(*C*H₃)COOMe], 18.1 (C-6^{1V}), 17.9 (*C*H₂-Si(CH₃)₃], -1.5 (Si(*C*H₃)₃) Anal. Calcd for C₉₅H₁₁₅O₂₄NSi: C, 67.79; H, 6.89. Found: C, 67.66; H, 7.09.

2-(Trimethylsilyl)ethyl 3-O-[(R)-1-methoxycarbonyllethyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-O-acetyl- α -D-mannopyranosyl- $(1 \rightarrow 4)$ -2-O $acetyl-\alpha-D-mannopyranosyl-(1\rightarrow 3)-2-aceta$ *mido-2-deoxy-β-*D-*glucopyranoside* (19).Compound 18 (50 mg, 0.03 mmol) was dissolved in AcOH (4 mL) and stirred under H₂ for 2 days in the presence of 10% Pd-C (95 mg). The reaction mixture was then filtered through a Celite bed and concentrated. Column chromatography with 10:5:1 CHCl₃-MeOH-H₂O gave 19 as a glassy syrup (21 mg, 73%; $[\alpha]_{D}^{25} - 30.57^{\circ} (\tilde{c} \ 0.4, \ H_{2}O)$. ¹H NMR: δ 5.47–5.37 (m, 4 H, H-2^{II}, H-2^{III}, H-1^{II}, H-1^{III}), 5.15 (bs, 1 H, H-1^{IV}), 5.14 (d, 1 H, J 8.7 Hz, H-1^I), 3.41 (s, 3 H, CH(CH₃)- $COOCH_3$), 3.90 (m, 2 H, OCH_2CH_2Si), 2.03, 2.02, 1.92 (3 s, 9 H, 2 OAc, 1 NHCOC H_3), 0.76 (m, 2 H, OCH₂CH₂Si), -0.13 (s, 9 H, $Si(CH_3)_3$). ¹³C NMR: δ 174.4, 174.1, 173.8, 173.8 (4 carbonyl carbons), 100.8 (C-1¹), 100.3, 99.9 (C-1^{II}, C-1^{III}), 97.6 (C-1^{IV}), 78.9, 76.5, 74.8, 74.1, 72.5, 71.8, 71.7, 69.8, 69.1, 68.1, 65.5, 61.4, 54.7 (C-2¹), 51.9 (COOCH₃), 23.7 (NCOCH₃), 21.4, 21.1 (2 COCH₃), 19.7 $(CH(CH_3)COOMe)$, 17.9 $(C-6^{IV})$, 17.6 (CH_2-6^{IV}) $Si(CH_3)_3$, -1.5 ($Si(CH_3)_3$). Anal. Calcd for $C_{39}H_{67}O_{24}NSi: C, 48.69; H, 7.02. Found: C,$ 48.57; H, 7.19.

Acknowledgements

One of the authors (I.M.) is indebted to CSIR, New Delhi, for financial assistance.

References

- [1] K. Shiga, Zentralbl. Bacteriol., 24 (1898) 817-828.
- [2] C.Y. Chu, B. Liu, D. Watson, S. Szu, D. Bryla, J. Shiloach, R. Schneerson, J.B. Robbins, *Infect. Immun.*, 59 (1991) 4450–4458.
- [3] M.L. Cohen, Science, 257 (1992) 1050-1055.
- [4] J.B. Robbins, C. Chu, R. Schneerson, *Clin. Inf. Dis.*, 15 (1992) 346–362.
- [5] J.B. Robbins, C. Chu, D.C. Watson, S. Szu, E.M. Daniels, C.U. Lowe, R. Schneerson, *Rev. Inf. Dis.*, 13 (1991) S362–S365.
- [6] (a) F.-I. Auzanneau, D.R. Bundle, Carbohydr. Res., 247 (1993) 195–209. (b) F.-I. Auzanneau, D.R. Bundle, Can. J. Chem., 71 (1993) 534–548.
- [7] (a) V. Pozsgay, C.P.J. Glaudemans, J.B. Robbins, R. Schneerson, *Tetrahedron*, 48 (1992) 10,249–10,264. (b) V. Pozsgay, L. Pannell, *Carbohydr. Res.*, 258 (1994) 105–122. (c) V. Pozsgay, B. Coxon, *Carbohydr. Res.*, 257 (1994) 189–215. (d) V. Pozsgay, *J. Am. Chem. Soc.*, 117 (1995) 6673–6681.
- [8] (a) H. Paulsen, H. Bünsch, Chem. Ber., 114 (1981) 3126–3145.
 (b) H. Paulsen, H. Bünsch, Tetrahedron Lett., 22 (1988) 47–50.
- [9] (a) V. Pozsgay, J. Org. Chem., 63 (1998) 5983–5999. (b)
 V. Pozsgay, C. Chu, L. Pannel, J. Wolfe, J.B. Robbins, Proc. Natl. Acad. Sci. USA, 96 (1999) 5194–5197.
- [10] B.A. Dmitriev, L.V. Backinowsky, Y.A. Knirel, N.K. Kochetkov, I.L. Hofman, Eur. J. Biochem., 78 (1977) 381–387.
- [11] I. Bajza, J. KeréKgyártó, J. Hajkó, L. Szilágyi, A. Lipták, Carbohydr. Res., 253 (1994) 111–120.
- [12] A.K. Choudhury, A.K. Ray, N. Roy, J. Carbohydr. Chem., 14 (1995) 1153–1163.
- [13] K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson, J. Dahmén, G. Noori, K. Stenvall, J. Org. Chem., 53 (1988) 5629–5647.
- [14] J.S. Brimacombe, *Methods Carbohydr. Chem.*, 6 (1972) 376–378.
- [15] T. Ogawa, H. Yamamoto, Agric. Biol. Chem., 49 (1985) 475–482.
- [16] P.J. Garegg, I. Kvarnström, A. Niklasson, G. Niklasson, S.C.T. Svensson, J. Carbohydr. Chem., 12 (1993) 933– 953.
- [17] C. Augé, S. David, A. Veyriéres, J. Chem. Soc., Chem. Commun., (1976) 375–376.
- [18] S. Sarbajna, A.K. Misra, N. Roy, Synth. Commun., 28 (1998) 2559–2570.
- [19] (a) G.H. Veeneman, J.H. van Boom, *Tetrahedron Lett.*,31 (1990) 275. (b) R.U. Lemieux, A.R. Morgan, *Can. J. Chem.*, 43 (1965) 2190–2198.
- [20] A.K. Choudhury, I. Mukherjee, B. Mukhopadhyay, N. Roy, J. Carbohydr. Chem., 18 (1999) 3361–3367.
- [21] G.H. Veeneman, S.H. van Leeuwen, J.H. van Boom, Tetrahedron Lett., 31 (1990) 1331–1334.
- [22] O. Kanie, S.C. Crawley, M.M. Palcic, O. Hindsgaul, Carbohydr. Res., 243 (1993) 139–164.
- [23] M. Wilstermann, L.O. Kononov, U. Nilsson, A.K. Ray, G. Magnusson, J. Am. Chem. Soc., 117 (1995) 4742– 4754.
- [24] J. Fried, D.E. Watz, J. Am. Chem. Soc., 71 (1949) 140–143.